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Abstract—The modern automobile has dozens of ECU (electric
control units), with multiple often broadcasting across the same
network. Also in modern times, it has become apparent that
criminals with nefarious tools could potentially take control of
a modern automobile remotely. Counterfeit and illegitimately
installed ECUs could also be a concern, causing hostile or
otherwise illegitimate behavior in controllers important for safety.
Due to these concerns, the need for additional security in
modern automobiles has become readily apparent. The need
for additional cyber security is especially true given that future
vehicles are becoming increasingly automated.

In this paper, we demonstrate two applied methods of machine
learning for classifying ECU signals, utilizing a carefully engi-
neered feature set extracted from samples from eight different
ECUs. Our two chosen machine learning methods for demon-
strating our application here are k-nearest neighbors and naive
bayesian.

Index Terms—machine learning (ML), k-Nearest Neighbors
(kNN), naive Bayes, cyber security, automotive security, CAN
(controller area network), ECU (electronic control unit).

I. INTRODUCTION

Automobiles in recent times utilize numerous controllers
(ECUs) to control various features of the vehicle. These ECUs
communicate with eachother across mediums such as CAN
(controller area network). The importance of each ECU ranges
from low to critical, for example, one may control the brakes,
while another may only monitor tire pressure.

The cyber security preparedness of modern vehicles has
become under increased scrutiny under the last few years, after
it became apparent there was none to little security beyond the
air gap (no remote connectivity), and future cars are becoming
more connected, or not-air-gapped. While innovations such
as self-driving cars that communicate with each other are
amazing and worthwhile, they further increase the need for
security.

Because of the need for further security, we present in
this paper two applied methods for classifying ECU signals,
and a useful set of features that we use to accomplish this
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classification. We look forward to further derivative works and
advancements in the field of automotive internal security.

II. RELATED WORKS

Recently (2019), Hafeez et. al. [1] demonstrated an applied
security technique where they captured time-series voltage
output from several ECUs communicating over CAN, ex-
tracted several relevant features, and trained a neural network
to classify the source of a sample signal, that is, identify which
ECU it came from. They found high quality results from this
method, 97.4%.

Utilizing a similar but simpler approach, our work in this
paper shows that almost as effective, 90%, results can be
obtained utilizing human comprehensible machine learning
methods such as k-Nearest Neighbors and Naive Bayes in
conjunction with effective feature extraction.

In 2017, Avatefipour et al. [2] also demonstrated a similar
approach to tackle ECU fingerprinting. This was conducted in
a similar manner to our approach in which different features
were found and utilized from the CAN High voltage. The
difference between their technique and ours is that they also
incorporated differentiating CAN channels. This shows that
this type of application could be viable in a plethora of
different domains.

In 2018, Hafeez et. al. [3] showed that when utilizing fre-
quency response of different ECU’s transmitting the same data
package, it was possible to determine the source ECU. This
was due to every ECU having a slightly different frequency
response. This data was then utilized to train and test a neural
network which produced 94% accuracy rating.

In 2019, Tian et. al. [4] showed that the temperature
variations prove to be an issue with fingerprinting different
ECU signals. This is due to the variance in the clock offset.
They found that the average clock offset of different ECUs
were about the same when tested at the same temperature,
whereas when the temperature varies the clock offset also
varied. This was shown utilizing some ECUs at 20°C while



some were ran at 0°C. It raises some concerns about other
fingerprinting techniques as if this is not taken into account
during development, fingerprinting techniques could fail.

In 2018, Choi et. al. [5] conducted a similar approach as our
project although when doing feature extraction, they utilized
only the extended identifier field of a CAN message. Doing
this they utilized SVM, NN, and BDT. While doing this it was
noticed that better results were obtained when there are more
dominant states than recessive (i.e. more 0’s than 1°s).

III. SYSTEM MODELING

For purposes of proof of concept, we begin with a collection
of gathered signal samples from 8 separate ECUs.
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Fig. 1. ECU layout example - Source: Adapted from [6]

The signal samples consist of a rectangular wave, repeated
for several cycles. Due to various electrical engineering man-
ufacturing accuracy, the signals which have variances between
them - that is - depending on where they are sourced from.
Utilizing a technique called fingerprinting, we will attempt to
extract relevant features from a given signal sample and then
utilize machine learning methods to classify, or identify, the
source of said signal sample.
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Fig. 2. System Architecture

A. Cycle Extraction:

Before we can start extracting features, we must perform
at least some pre-processing. We elected to break the samples

down to the cycle level because each sample consisted of a
cycle repeated several times. This implementation effectively
quintupled our available data samples to train with.
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Fig. 3. Data Sample
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Fig. 4. Extracted Cycle

B. Feature Selection:

After pre-processing, we isolate 6 different features from
each sample. These features are: duty cycle, voltage minima,
voltage range, linear discriminant analysis (LDA), independent
component analysis (ICA), and principle component analysis
(PCA).

Duty Cycle

Sor_o(1if sample[k] > 3V, else 0) 1
- ey
Duty Cycle shown in equation (1) works by examining the
signal in question and if it is found to be greater than 3V then
it is considered a 1, if it is lower it is considered a 0. This is
carried out until all of the samples within the particular class is
completed, adding together the outcomes of the comparisons,
and finally dividing this by the total number of samples within
the class. The following results were produced after finding the
Duty Cycle of each individual class, as shown in the density
graph figure (5).

Voltage Minima
arg min (V) 2)
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Fig. 5. Duty Cycle %

Our voltage minima feature simply represents the lowest
point in a queried cycle. The location of this point as relevant
to the rectangle wave can vary depend on the ECU it was
sourced from.

The following results were produced after finding the volt-
age minima of each individual class, as shown in the density
graph figure (6).
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Fig. 6. Voltage Minima %

Voltage Range

3)

Our voltage range feature represents, in a given cycle, the
greatest peak subtracted by the lowest minima.

The following results were produced after finding the volt-
age range of each individual class, as shown in the density
graph figure (7).

argmax (V) — argmin (V)

Linear Discriminant Analysis (LDA)
1
2

Linear Discriminant Analysis (LDA) shown above in equa-
tion (4) works by assuming that there is an equal covariance
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Fig. 7. Voltage Range %

(X)) amongst the classes. You may then utilize this information
along with the mean (u) of the data (x) to find the highest
likelihood amongst the classes. The following results were
produced after finding the LDA of each individual class, as
shown in the density graph figure (8).
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Fig. 8. LDA Distribution

Principle Component Analysis (PCA) is utilized to reduce
the dimensionality of variable space. This is carried out by the
following 5 steps:

1) Scale the data. This is carried out by subtracting the mean

from the data and then dividing by the standard deviation.

2) Calculate the covariance matrix.

3) Calculate the eigenvectors and eigenvalues.

4) Find the principle components. This is done by sorting
the eigenvectors by diminishing eigenvalues and pick k
eigenvectors with the biggest eigenvalues.

5) Determine the new pivot by re-direction of the data
according to the principle components.

The following results were produced after finding the PCA of
each individual class, as shown in the density graph figure (9).

Independent Component Analysis (ICA) is utilized to isolate
a multivariate signal into its basic segments. This is carried out
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Fig. 9. PCA Distribution

by the following 7 steps.

1) Center the data. This is carried out by subtracting the
mean from the data.

2) ”Whiten” the data by changing it so that expected rela-
tionships between its segments are eliminated (covariance
equivalent to 0) and the fluctuation of every part is
equivalent to 1.

3) Pick an arbitrary introductory value for the de-blending
matrix w.

4) Find the updated value for w.

5) Compute the normalization of w.

6) Check whether calculation has converged and in the event
that it hasn’t, get back to stage 4.

7) Utilize the dot product of the originating data and matrix
w. This leaves you with the independent signals.

The following results were produced after finding the ICA of

each individual class, as shown in the density graph figure
(10).
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Fig. 10. ICA Distribution

IV. METHODOLOGY
A. k-fold Cross-Validation:

To prevent overfitting on specific training segments, a
technique such as k-fold Cross-Validation is necessary. This

technique takes your dataset and insures the training segments
and the validation/testing segments are different each run, and
that the results are recorded after and averaged.

We implemented a more robust version of k-fold Cross-
Validation by using a shuffling technique. Every time we train
and test a new model, the dataset is randomly shuffled before
the training and testing segments are divided. This allows us
to ensure that there is no overfitting present.

B. k-Nearest Neighbors:

k-Nearest Neighbors is a machine learning algorithm that,
in its simplest format, finds the k (where k is a number) nearest
neighbors to the query point, and tallies up their vote on what
class the query point is likely to be.

This is done by first computing the distance of every training
point, from the query point. The distance formula for two
dimensions is as follows:

distance = \/(al — ag)2 + (b1 — b2)2 5)

Once you have all the distances, you then sort by distance
- smallest values first.

Depending on the value of k chosen, let us assume 3, you
will examine the 3 closest neighbors to the query point. Taking
each close neighbor’s class, you will tally up the results. The
class with the most votes will be the assumed class of the
query point.

For a k of 1, you just need to examine the closest neighbors
class to classify the query point, that is:

class query) = class closest neighbor) (6)

This algorithm can become more advanced with a weighting
function. A typical weighting function is distance based, that
is the close neighbors that are closer to the query point will
be worth more than the close neighbor that is the farthest.

For our kNN method, we utilized our first 3 features, that
is: duty cycle, voltage minima, and voltage range.

C. k-Nearest Neighbors Hyper Parameter Tuning:

k-Nearest Neighbors systems can be hyper tuned by adjust-
ing the amount of neighbors considered, and the weighting
algorithm (if any).

Since adjusting these is cheap, we decided to check several
different tuning each run. We test with 6 different models,
with values of k between 3 and 7, and an additional weighting
function applied as well.

D. Naive Bayes:

The Naive Bayes algorithm is based upon the Bayes The-
orem. This theorem utilizes prior conditions that could be
related to an event in order to determine the probability of
an event occurring.

Bayes Theorem

)



The above equation (7) shows how Bayes Theorem is
carried out. The posterior probability is shown as P(c’x)
and represents the probability of a class given a particular
predictor. This is found by first multiplying the likelihood
of P(x‘c) with the classes prior probability P(c). From here
you must divide the outcome of this by the predictors prior
probability P(x).

When utilizing this algorithm within our project the python
library takes a similar approach to tackle this equation. This
is carried out utilizing the Gaussian Naive Bayes equation as
shown below in equation (8).

Gaussian Naive Bayes
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Equation (8) above is carried out in a similar manner as
equation (7) as the oy and p,, are estimated by utilizing the
likelihood. For our implementation the model was trained with
our selected features and classifications of the features. This
was conducted utilizing a combination of different feature
sets in order to compare the accuracy ratings of different
combinations.

V. RESULTS

For our results section, we will compare the accuracy
metrics between our two methods - including their tuned
versions. Figure (12) and (13) show our results across every
model. These results shown are the percent accuracy that each
model found.

For k-Nearest Neighbors, we found in our five runs that
the simplest version (k = 3, no weights) had the best results
and lowest deviation. It was more much more consistent with
its average of 88% than other versions, despite other versions
occasionally seeing accuracy as high as 95%. These k-nearest
neighbors runs were achieved using our features duty cycle,
absolute minima, and voltage range.

For our Naive Bayes models, we utilized four different fea-
ture sets. NB1 used Duty Cycle, Absolute Minima, and Voltage
Range. NB2 used LDA, Duty Cycle, Absolute Minima, and
Voltage Range. NB3 used ICA, Duty Cycle, Absolute Minima,
and Voltage Range. NB4 used PCA, Duty Cycle, Absolute
Minima, and Voltage Range.

In the case of Naive Bayes, NB1 and NB3 performed the
best, with an average accuracy over 5 runs of 86.6%.

So, at least in the case of these 5 test runs and with our
chosen feature sets, the most simple model (kNN with k of 3)
achieved the best results.

Another interesting note is that when executing NB with
either PCA as a feature set or ICA as a feature set, the
accuracy rating was the same (shown in figure 11). This is
interesting due to the fact of how PCA and ICA are polar
opposites in the way in which the algorithm works. Where
PCA focuses on maximizing the variance whereas ICA doesn’t
focus variance. It is believed to be this way due to the repetitive

data points that are incorporated within this data set but further
investigation is warranted.
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Fig. 11. PCA vs ICA

Lastly it was noticed that the Naive Bayes method took
on average less time to carry out than K-Nearest Neighbors.
This was observed by implementing print statements around
the training and predicting. This is most likely due to the
larger amount of computation required to carry out K-Nearest
Neighbors. Whereas the timings were not very far apart you
can see in figure (14) that Naive Bayes method was on average
faster and thus should be utilized over K-Nearest Neighbors.

VI. CONCLUSION

In this paper, we presented a simple fingerprinting method
for ECU signals that still achieved close to 90% accuracy.
We did this by utilizing step extraction, feature engineering,
and two machine learning methods - k-Nearest Neighbors
and Naive Bayes. The motivation was cyber security. Feature
engineering is perhaps the most important part as all other
results are derived from the quality of that. Features in general
must be appropriate to distinguish classes. Our chosen features
were based on electrical engineering manufacturing differ-
ences in ECU which resulted in different outputs. k-Nearest
Neighbors and Naive Bayes, our chosen methods, were chosen
specifically for their known usefulness and comprehensibility.
As such, we were able to show that one does not need a
convoluted convolution neural network to achieve reasonable
results even with live data. We greatly look forward to deriva-
tive works and any further improvements or deployments in
the field of automotive security.

VII. REFERENCES

[1] A. Hafeez, K. Topolovec and S. Awad, "ECU Fin-
gerprinting through Parametric Signal Modeling and Artifi-
cial Neural Networks for In-vehicle Security against Spoof-
ing Attacks,” 2019 15th International Computer Engineer-
ing Conference (ICENCO), 2019, pp. 29-38, doi: 10.1109/I-
CENCO048310.2019.9027298.

[2] O. Avatefipour, A. Hafeez, M. Tayyab and H. Malik,
“Linking received packet to the transmitter through physical-
fingerprinting of controller area network,” 2017 IEEE Work-
shop on Information Forensics and Security (WIFS), 2017, pp.
1-6, doi: 10.1109/WIFS.2017.8267643.

[3] A. Hafeez, M. Tayyab, C. Zolo and S. Awad, ’Finger Print-
ing of Engine Control Units by Using Frequency Response for
Secure In-Vehicle Communication,” 2018 14th International



k-Mearest Neighbors Naive Bayes
k-fald k=3 k=3, w k=5 k=5,w k=7 k=7,w  NB_1 NB_2 NB_3 NB_4
1 B8 83 94 88 85 86 91 78 80 50
2 86 85 84 34 83 B84 88 74 86 86
3 88 86 85 a6 79 a5 a3 81 83 a3
4 90 89 85 86 a3 88 88 81 89 a3
3 88 B85 B0 84 81 83 83 68 B85 85
avg 88 83.6 85.6 85.6 84.2 85.2 86.6 76.4 86.6 85.4
sd| 1.264911 1.959592 4.586938 1.496663 5.6 1.720465 3.136877 4.923413 2.57682 2.57682

Fig. 12. Results Table As Percent

Results

100
90
B
Fi
B
5
4
3
2
1

= == R = = [ == [ = B = I = |

0

k=3, w

migiesl miges? mSaesd

k=fw MNB_1 MNB2 MNB3 NBA4

k=5,w

Saest migess

Fig. 13. Results Chart As Percent

Algorithm Timings

E3
8

=
m
[X]

=
=]
ey

k=7, Weighted
k=7
k=5, Weighted
k=5
k=3, Weighted
k=3

[=]

0.002 0.004

0.006 0.008 0.01 0.012

Fig. 14. Algorithm Timings

Computer Engineering Conference (ICENCO), 2018, pp. 79-
83, doi: 10.1109/ICENCO0.2018.8636140.

[4] M. Tian, R. Jiang, C. Xing, H. Qu, Q. Lu and X.
Zhou, “Exploiting Temperature-Varied ECU Fingerprints for
Source Identification in In-vehicle Network Intrusion Detec-
tion,” 2019 IEEE 38th International Performance Computing
and Communications Conference (IPCCC), 2019, pp. 1-8, doi:
10.1109/IPCCC47392.2019.8958766.

[5] W. Choi, H. J. Jo, S. Woo, J. Y. Chun, J. Park and D. H.
Lee, “Identifying ECUs Using Inimitable Characteristics of
Signals in Controller Area Networks,” in IEEE Transactions
on Vehicular Technology, vol. 67, no. 6, pp. 4757-4770, June
2018, doi: 10.1109/TVT.2018.2810232.

[6] Photograph of ECU Layout, ECU’S, Accessed on: August
12, 2021. [Powerpoint] ECE 5831 Project.ppt



